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Abstract 

One goal of crystal chemistry is to construct approaches to compute from "first principles" the structural properties 
of ordered compounds. Such an approach is particularly valuable for families of structures with a given stoichiometry. 
An example of this case is crystalline silica. SiO2 may exist in a variety of structures which are nearly identical 
in terms of binding energies. We will illustrate how first principles methods may be employed to predict the 
relative stability of silica polymorphs, and how these forms may transform under pressure to other ordered, or 
disordered, phases. Our methods are based on ab initio pseudopotentials constructed within the local density 
approximation. These pseudopotentials have been optimized for use with a plane wave basis and should be 
widely applicable for determining the crystal stability of silicates and related materials. 

1. Introduction 

Today it is possible to predict accurately the structural 
parameters of a crystal with the only input being the 
atomic species present. One of the first applications 
of total energy calculations was to consider the tetra- 
hedral crystals of carbon, silicon and germanium [1]. 
The lattice parameters  of these crystals were computed 
to within 1%-2%, and superconducting forms of silicon 
were predicted on the basis of these techniques [2]. 
In the past few years, these methods have been suc- 
cessfully applied to a variety of materials ranging from 
rare earths, to transition metals, to oxides [3]. Surfaces 
and interfaces, and properties of amorphous solids have 
also been considered [1]. Properties of small clusters 
have been computed with an accuracy rivalling so- 
phisticated quantum chemistry techniques in terms of 
the bond lengths and angles, [4, 5]. Typically, the 
accuracy of these methods is a few per cent not only 
for bond lengths, but also for phonon energies and 
elastic constants. These methods may also be used to 
examine dynamical effects. Applications have been made 
to semiconducting systems, and the nucleation process 
in small silicon clusters [5]. There  are no inherent 
limitations with respect to the size of the system for 
these methods, save computing power. 

However, these methods are not particularly valuable 
for obtaining an "overview" of chemical trends for 
related crystalline families. The computations are simply 
too intensive, and a case by case study is a more 

appropriate mode. For  example, to assess possible 
candidates for forming quasi-crystals [6], one might 
wish to consider several hundred candidate structures. 
In this case, chemical coordinates based on orbital radii, 
electronegativity and electron count are more useful. 
These coordinates can be used to systematize a large 
body of crystal structure data with literally thousands 
of entries. However, there are important applications 
for crystal trends which are not appropriate for chemical 
coordinates. For  a fixed stoichiometry, it is not possible 
to use chemical coordinates to explore regularities in 
polymorphs. An example of this case is crystalline silica. 
S i O  2 may exist in a variety of structures which are 
nearly identical in terms of binding energies. In this 
paper, we will illustrate how first principles methods 
may be employed to predict accurately which forms of 
Si02 are most stable and how these forms may transform 
under  pressure. We will also briefly discuss other  issues 
which may be handled by "first principles" methods 
such as understanding the driving force for the amor- 
phization of quartz under pressure. 

2. Numerical  methods  

In this section, we review briefly the numerical meth- 
ods employed to compute the total electronic energy 
of  silica structures. We employ ab initio pseudopotentials 
[7] which are constructed within the local density ap- 
proximation (LDA) [8-10]. The LDA is a powerful 
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approximation which allows one to map the many-body 
problem onto a one-electron problem. Within this ap- 
proximation, the total electronic potential for the valence 
electrons is written as 

Vtotal(r  ) = ~ ion ( r )  + VH(F ) "]- V x c [ p ( r ) ]  (1 )  

V~on corresponds to the interaction potential between 
the valence electrons, and the nucleus and tightly bound 
core electrons, i.e. the ion-core pseudopotential. VH 
corresponds to the electrostatic interactions between 
the valence electrons and Vxc corresponds to the effective 
exchange-correlation potential between the valence 
electrons. This latter term is the basis of the LDA; 
the exchange-correlation potential at a point r depends 
only on the electron density p(r) at that point. 

The replacement of the all electron potential with 
a pseudopotential has a number of advantages when 
compared with an all electron calculation. Core states 
are not considered, and only the properties of the 
chemically active valence states are reproduced. In the 
case of silica, the ls 2, 2s 2, 2p 6 states in silicon are 
treated as chemically inert, as is the ls 2 state in oxygen. 
Since only the valence states are replicated by the 
pseudopotentials, simple bases can be used. One of 
the most useful bases is a basis composed of plane 
waves. The advantages of a plane-wave basis are nu- 
merous: the basis is complete, no shape approximations 
are made, the set is orthogonal/orthonormal, and the 
electrostatic potential can be evaluated trivially with 
a plane wave basis. 

Our pseudopotentials were generated using the 
method of Troullier and Martins [3]. Their method 
produces "soft" pseudopotentials, i.e. pseudopotentials 
which allow a rapid convergence in terms of a plane 
wave basis. The oxygen ion core pseudopotential was 
generated from the atomic 2s22p 4 ground state config- 
uration with a radial cut-off of 1.45 a.u. The pseudo- 
wavefunctions converge to the "all electron" wave- 
functions outside of this cut-off; within the cut-off the 
pseudo-wavefunctions are nodeless. The oxygen pseu- 
dopotential was not adjusted to replicate the unoccupied 
3d-states as these states are not expected to contribute 
significantly to the chemical bond. For silicon, s-, p-, 
and d-components of the potential were included. The 
radial cut-off for all three components was taken to 
be 1.80 a.u. 

Given an ion core pseudopotential, the valence elec- 
trons are allowed to respond to the potentials to form 
a self-consistent total potential. Initially, an approximate 
potential is used to solve the one-electron Schr6dinger 
equation. The wavefunctions from the solution of this 
approximate potential are then used to construct a new 
potential which in turn can generate new wavefunctions 
from which the potential can be updated again. When 
the "input" potential agrees with the "output" potential, 

a self-consistent field has been obtained. 
The one-electron Schr6dinger equation for a periodic 

crystal has the form: 

This equation was solved using a fast iterative dia- 
gonalization method [11, 12]. One advantage of this 
method is that it does not require a calculation of the 
full hamiltonian matrix. Rather, only H e  is calculated. 
This procedure leads to a dramatic reduction in storage, 
and a considerable reduction in computing time. Plane 
waves up to an energy cut-off of 64 Ry were included 
in the basis. Even for a relatively simple form of 
crystalline silica, such as a-quartz, this entails a few 
thousand plane waves in the basis. We have increased 
the cut-off to 144 Ry and estimate the total energy to 
be converged to within 0.01 eV per molecular unit for 
the crystalline forms of SiO2 examined here. 

Once the Schr6dinger equation is solved, the energy 
and spatial distributions of the valence electrons are 
known [13]. The total electronic energy can be obtained 
from terms of the form: 

Etota  I =E . . . . . . .  "~- [Ekineti c +E . . . .  lectron -]- Eelect  . . . .  lectron] 

(3) 

The first term corresponds to the Coulomb interactions 
of the ion cores. Since the cores are treated as rigid, 
this term can be evaluated by a Ewald summation. The 
remaining terms are evaluated using the electronic 
pseudo-wavefunctions. The kinetic energy Eklnet l  c is 
evaluated trivially in a plane wave basis. The ion 
core-electron term E . . . .  lectron is evaluated from the 
valence charge density and a knowledge of the ion core 
pseudopotential. The most complicated term is the 
electron-electron term Eelectron_electron. T h i s  term con- 
tains Coulomb terms from the Hartree potential VH 
which must be included in a Ewald summation with 
the core-core interactions. The energy of this term 
corresponds to each valence electron moving in an 
average potential generated by the other electrons. The 
term also includes exchange-correlation energies re- 
suiting from Vxc. Within the local density approximation, 
these terms can be evaluated once a self-consistent 
charge density has been constructed. 

The goal of a total energy calculation is to determine 
the total electronic energy for a given structure, or 
structures. For example, we might consider a number 
of candidate structures for SIO2. Since crystalline silica 
often condenses in complex structures with a number 
of internal parameters, it is non-trivial to evaluate the 
structural energy. For example, the a-quartz structure 
has three molecular units in the hexagonal unit cell. 
The cell shape is determined by the c/a ratio, and four 
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internal parameters fix the positions of the silicon and 
oxygen atoms within the cell [14]. At each volume, the 
shape and internal structure of the crystal must be 
optimized by minimizing the total energy. It is possible 
to expedite this procedure by calculating the forces on 
each atom using the Hellman-Feynman theorem [15]. 
The atoms can then be moved according to the computed 
forces to minimize the structural energy. One can use 
the energy vs. volume calculations to determine the 
enthalpy of the structure as a function of volume, or 
pressure. This type of calculation can be used to predict 
which phase of silica will be most stable as a function 
of pressure. Moreover, the results can be used to predict 
such ground state properties as the cohesive energy, 
ambient structural parameters, and bulk moduli of 
virtually any crystalline form of silica [15-18]. 

The chief limitation of this procedure resides in the 
local density approximation. This approximation gen- 
erally gives structural properties to within approximately 
1%-2%. The cohesive energies are not determined so 
accurately, and the binding energy is usually overes- 
timated by 5%-10%. However, the relative energy 
differences between solid state structures are more 
accurately calculated. Structural energy differences as 
small as approximately 0.01 eV per atom can be reliably 
predicted within the LDA. Another issue which limits 
the applicability of these methods centers on com- 
putational limitations. At present, we can routinely 
handle unit cells with no more than 10-15 molecular 
units of S i O  2 using supercomputers. 

While the calculations we present here omit the role 
of temperature, it is possible to include the temperature 
dependence of the structural properties. For example, 
one can include phonon contributions to entropy and 
construct a free energy. However, if one is interested 
in similar structures, the inclusion of temperature may 
not be so important. The errors introduced by the LDA 
may be greater than the effect of temperature on a 
given structure. 

When subjected to pressure, one might expect the 
coordination of the cations, and anions, in a crystalline 
phase to increase. In the case of silica, this has been 
an area of some conjecture. Over 30 years ago, a new 
phase of SiO2 in the rutile structure was discovered, 
i.e. stishovite. Stishovite can be formed from silica under 
pressure, yet it can exist in a metastable state under 
ambient conditions. In this form of crystalline silica, 
silicon is six-fold coordinated. Questions as to the denser 
forms of silica beyond stishovite have been raised in 
the context of mineral physics. 

In Fig. 1, we illustrate some of the common forms 
of crystalline silica along with possible high pressure 
forms. The structures with SiO2 tetrahedral units include 
a- and/3-quartz. Known dense phases of silica include 
stishovite which corresponds to the rutile structure. 
Possible high density phases of silica include fluorite, 
and a distortion of the fluorite structure, the Pa3 
structure. In particular, it might seem that a "fluorite- 
like" structure would be an appropriate candidate for 
a high pressure form of silica as the cation in such a 
structure is eight-fold coordinated. 

In Fig. 2, we illustrate the energy of the structures 
as a function of volume. These curves were generated 
by fitting a standard equation of state such as the Birch 
equation [19] to computed energies as a function of 
volume. Consistent with experiment, we find that the 
lowest energy phase is the a-quartz structure which is 
a distortion of the /3-quartz structure. The stishovite 
structure is nearly as stable as the quartz structure, 
but the equilibrium molecular volume is considerably 

fluorite 

oc and ~-quartz stishovite and CaCI 2 

3. Structure of crystalline silica 

Broadly speaking, crystalline silica may be classified 
by the coordination of the silicon cation. In the most 
stable forms of crystalline silica, silicon is four-fold 
coordinated and the structures may be thought to consist 
of 8i(O4)1/2 tetrahedral units. Within these units, the 
O-Si-O bond angles are close to the ideal tetrahedral 
angle of 109.5 °. The tetrahedral units are linked via 
bridging oxygen atoms. The Si-O-Si bond angles center 
near about 140 ° with a range of + 20 °. These bridging 
oxygen bond angles are quite pliant and the differences 
between four-fold coordinated crystals of SiOz can be 
traced to how the tetrahedral units are linked together. 

Pa3 

Fig. 1. Ball and stick models for several polymorphs of crystalline 
silica, a- and /3-quartz possess four-fold silicon cations. The 
stishovite and the CaC12 structures possess six-fold cations. Pro- 
posed high pressure forms of crystalline silica include the Pa3 
structure and the fluorite structure. These latter structures possess 
eight-fold coordinated cations. 
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Fig. 2. Equations of state for several polymorphs of silica. The 
curves were generated by fitting a Birch equation of state [19] 
to the theoretical calculations. 

smaller owing to the higher coordination in the stishovite 
structure. The CaC12 structure, which corresponds to 
a distorted stishovite structure [18, 20], is nearly de- 
generate in energy with stishovite in our calculations. 

Perhaps the most interesting aspect of Fig. 2 is the 
prediction that the Pa3 structure should be stable under 
high pressure whereas the fluorite structure is not. Our 
calculations predict that the density of the fluorite is 
slightly lower than the density of the Pa3 or the stishovite 
structures. From thermodynamics, it is not possible to 
convert a dense structure into a less dense structure 
with the application of isotropic pressure. The inclusion 
of temperature is unlikely to alter our calculations and 
this conclusion. Despite theoretical predictions indi- 
cating the high pressure stability of the Pa3 structure, 
it has not been observed at pressures up to about 100 
GPa. There may be kinetic barriers which inhibit the 
transformation of the stishovite, or CaC12, structure to 
the Pa3 structure. 

In Table 1, we list the calculated structural parameters 
which enter the Birch equations of state. The equation 
of state parameters include the equilibrium energy and 
volume, the bulk modulus, and pressure derivative of 
the bulk modulus. We have taken the equilibrium energy 
of a-quartz as the zero of energy. Relative to isolated 
pseudo-atoms of silicon and oxygen, we find quartz is 

over bound by about 15% i.e. we find the cohesive 
energy of quartz to be approximately 22.2 eV per 
molecular unit as compared with an experimental value 
of 19.2 eV per molecular unit. This is expected to be 
the case for an LDA calculation. The relative energies 
of the silica phases to a-quartz should be much more 
accurate. As expected, owing to the small siructural 
differences, the energy difference between a- and fl- 
quartz is only about 0.02 eV per molecular unit. Such 
a small energy difference is at the limit of accuracy of 
our methods. Stishovite is slightly higher in energy than 
a-quartz. This small energy difference is consistent with 
the observation that stishovite can coexist as a metastable 
phase with quartz. One might expect that if we were 
to include entropy in our calculation, the open quartz 
structure would be further stabilized vs. the stishovite 
structure. Open phases tend to have large phonon 
contributions to entropy when compared with dense 
phases. However, calorimetry measurements have in- 
dicated that the differences in the entropy between a- 
quartz and stishovite are smaller than one might have 
anticipated on the basis of this argument. 

The equilibrium volumes for the five phases in Table 
1 are in good agreement with experiment. The largest 
error is about 3%. Also, the bulk moduli are in good 
accord with experiment, except possibly for /3-quartz. 
The experimental value [21] tabulated was taken at a 
high temperature, i.e. 873 K, and it is questionable 
whether this value can be compared with the theoretical 
value. We have tabulated the pressure derivatives of 
the bulk modulus and compared them with experiment. 
This quantity is difficult to determine experimentally, 
and the comparison is qualitative at best. 

Ambient structural parameters from our calculations 
are listed in Table 2. The parameters are within a few 
per cent of experimental values. In both a- and fl- 
quartz, the c-axis tends to be slightly larger than ex- 
periment. It is not clear whether this is a result of the 
LDA, or perhaps a technical issue associated with the 
asymmetry of the unit cell. 

TABLE 1. Parameters of the Birch equation of state; a-quartz is taken to be the energy reference 

Silica Equilibrium energy V0 (/~3 per molecule) 
(eV per molecule) 

B0 (GPa) B~ 

Experiment Theory Experiment Theory Experiment Theory 

a-quartz [21, 22] 0 37.710 
/3-quartz [13, 23] 0.017 39.634 
Stishovite [24, 25] 0.086 23.308 
Fluorite 2.914 -- 
Pa3 0.699 -- 

37.86 37.1 38.1 
41.05 56.4 135.1 
22.82 313.0 292.0 
23.29 -- 300.1 
21.82 -- 347.0 

6.0 3.90 
-- 1.91 
6.0 5.86 
-- 4.13 
-- 3.89 
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T A B L E  2. S t ruc tura l  p a r a m e t e r s  o f  silica po lymorphs ;  the  theore t ica l  resul ts  are  ob ta ined  us ing  pseudopo ten t i a l s ;  the  expe r imen ta l  

r e f e r ences  a re  as in Tab l e  1 

Silica S ymmet ry  Lat t ice  cons t an t s  ( ~ )  In te rna l  coord ina tes  

E x p e r i m e n t  T h e o r y  E x p e r i m e n t  T h e o r y  

a - q u a r K  Hexagona l  a =4 .9160  4.89 
(P3121) c =5 .4054  5.49 

/3-quartz Hexagona l  a = 5.01 5.03 
(P6222) c = 5 . 4 7  5.62 

St ishovi te  T e t r a g o n a l  a = 4.1801 4.14 
(P42/mnm) c = 2.6678 2.67 

F luor i te  Cubic  - a = 4.53 
(Fro)m) 

Pa3 Cubic  -- a = 4.43 
(Pa3) 

u =0 .4697  0.469 
x = 0 . 4 1 3 5  0.418 
y = 0 . 2 6 6 9  0.274 
z = 0 . 1 1 9 1  0.118 

u =0 .197  0.211 

u =0 .3062  0.305 

u = 0.344 

4. Order-disorder transformations in silica 

Another area where first principles calculations can 
be of great utility concerns the solid-state order-disorder 
transformation. Such transformations can be induced 
by pressure. At high pressures, a-quartz subsists as a 
metastable phase which gradually transforms to an 
amorphous form and, subsequently, to a rutile-like 
crystalline structure. Evidence for the onset of amor- 
phization has been reported at about 15 GPa from 
single-crystal analysis [26]. In powder measurements 
[27], the transition is observed to be complete by about 
35 GPa. Experiments performed on powdered samples 
at pressures above 60 GPa indicate a crystalline structure 
which is thought to resemble the stishovite structure 
[281. 

One advantage of first principles structural energy 
calculations is that one can examine the theoretical 
evolution of the a-quartz crystalline phase at pressures 
above the amorphization transformation. It has been 
proposed that a-quartz would evolve under pressure 
to a structure in which the oxygen anions are arranged 
in a b.c.c, stacking, were it not for the fact that the 
crystal first amorphizes. The b.c.c, arrangement of ox- 
ygen anions was proposed [29] by an extrapolation of 
the trends observed during the compression of a-quartz 
and its low pressure isomorphic counterpart a-GeO2. 

We have tested this hypothesis by examining the 
arrangement of oxygen anions in a-quartz as a function 
of pressure [30]. At fairly high pressures, e.g. above 
about 50 GPa, we find that the anions are clearly 
tending toward a b.c.c, arrangement. For an ideal 
b.c.c, arrangement of oxygen anions, x=y=l /3  and 
z= 1/12 in the Wyckoff notation [14] and the lattice 
ratio c/a =(3/2)~/2~ 1.225. Assuming ideally centered 

Si(O4)l/2 tetrahedra, we have u = 5/12 =0.417 where u 
determines the position of the silicon cation. At ambient 
pressure, these parameters are x=0.418, y=0.274, 
z=0.118, u=0.469 and c/a=1.125. At a pressure near 
about 50 GPa, we find from our total energy calculations, 
x=0.350, y=0.339, z =0.077, u =0.406 and c/a = 1.149. 
The total energy calculations confirm a pressure-induced 
tendency of the oxygen anions toward the b.c.c, structure, 
although the b.c.c, arrangement is not ideal as the 
c/a ratio is smaller than expected. In Fig. 3, we illustrate 
the b.c.c, arrangement of oxygen anions at high pressure 
in the a-quartz structure. 

The b.c.c, packing is achieved at pressures significantly 
larger than the amorphization pressure. However, the 
main features associated with the b.c.c, packing already 
occur at pressures of the order of about 30 GPa. Oxygen 
b.c.c, packing, even in a non-ideal form, may promote 
the diffusion of the silicon cations. The body-centered 

Fig. 3. Theore t i ca l  high p re s su re  f o rm  for the  a -qua r t z  s t ruc ture .  
T h e  silicon ca t ions  a re  shown  by the  smal l  spheres ,  oxygen an ions  
by the  large spheres .  Note  how the  oxygen an ions  fo rm a b.c.c. 
packing at  high pressures .  
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cell has 12 equivalent tetrahedral sites and six octahedral 
sites. Only one of the tetrahedral sites is occupied in 
the a-quartz structure. Diffusion of silicon between the 
tetrahedral sites, or to a nearby octahedral site along 
"tunnels" formed by the columns of oxygen anions, 
may be a key process in the transformation to the 
amorphous state and the further transformation to the 
crystalline silicon six-fold coordinated structure. In Fig. 
4, we note that one of the independent O-Si-O angles, 
which is equal to approximately 110 ° in a-quartz, in- 
creases to approximately 127 ° in the b.c.c, environment. 
This angle opening may provide a pathway for enhanced 
diffusion of the silicon cations from the four-fold to 
six-fold sites. 

A closely related issue to the formation of the b.c.c. 
oxygen anion packing concerns the mechanical stability 
of a-quartz under pressure. It has been suggested that 
such an instability could drive the amorphization process 
[27, 31]. For example, b.c.c, packing could be inherently 
unstable against a shear. First principles calculations 
allow one to test such a hypothesis. We can understand, 
at least qualitatively, strain-induced non-linearities in 
a-quartz by examining changes in the bond angles with 
pressure. In Fig. 5, we plot the Si-O-Si and O-Si-O 
bond angles as a function of pressure. Except at very 
elevated pressures, the O-Si-O bonds remain near the 
tetrahedral angle of 109.5 °. However, the Si-O-Si bridg- 
ing bond angle is quite pliant. This angle is equal to 
145 ° at ambient pressure; at around 20 GPa it is reduced 
to 125 °. From roughly ambient pressures to 15 GPa, 
this angle varies linearly with pressure. Above 15 GPa, 
the angle exhibits a non-linear behavior with pressure. 
This non-linearity is indicative of a strained bond angle. 
Such a conclusion is consistent with quantum chemistry 
calculations on molecular fragments. These calculations 

0 • Tetrahedral site 
o Octahedral site 

) 
Fig. 4. Possible sites for silicon cations in a high pressure form 
of a-quartz. The b.c.c, packing of the oxygen anions may allow 
the "easy" diffusion of silicon cations from the tetrahedral sites 
to octahedral sites. Silicon cations in the octahedral sites share 
with stishovite a similar nearest-neighbor environment. 
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Fig. 5. Bond angles in a-quartz as a function of pressure. Above 
about 15 GPa, the bond angles behave in a non-linear manner, 
indicating the existence of a large internal strain energy. Ex- 
periment 1 is from ref. 22, experiment 2 is from ref. 15. 

suggest that Si-O-Si angles below about 120 ° are very 
unfavorable in terms of generating a large strain. 

Another structural feature which exhibits a large 
strain is the interpolyhedral O-O distance. The smallest 
O-O interpolyhedral distance at ambient pressure is 
3.4/~. This value decreases to approximately 2.6/~ at 
20 GPa. In naturally occurring silicates, the smallest 
known interpolyhedral distance is 2.75/~ which occurs 
in Be2SiO4. This suggests that the a-quartz structure 
may be becoming unstable at pressures greater than 
about 20 GPa as the minimum interpolyhedral distance 
approaches the smallest known value. Moreover, the 
behavior of this distance with pressure exhibits non- 
linear behavior above 15 GPa. 

While the Si-O-Si angles and the interpolyhedral 
O-O distances exhibit non-linearities with pressure, 
these do not provide a quantitative measure for me- 
chanical instability. However, with first principles meth- 
ods, it is possible to calculate the elastic constants 
directly as a function of pressure. Under initial hy- 
drostatic pressure, the elastic constants c ~  are related 
to the energy variation AE to second order in the 
strains e~8 ,  through [32] 
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AE AV 1 
--~-o = - P  --~o + 2 ,~.t3.,.,Z c,o,~e,,t3%~ (4) 

where AV= V-Vo.  p, V are the initial pressure and 
volume respectively. 

1 
AV= ~]Eoo+ ~ ~ [26o~-  ,%,%-,%6MEo~ E~ 

ota al3"y~ 

is the volume change to the second order in the strain. 
For a-quartz, it is possible using symmetry to reduce 
the number of independent elastic constants to six [33]: 
Cll , c12 , c13 , c14 , c33 , c44 where 1 =ax, 2 =yy, 3 =zz, 4 =yz. 
The elastic energy must be positive. This condition 
imposes the following constraints, the Born criteria: 

c11-Ic121 >0 (5) 

(cn + c12)c33 - 2c 23 > 0 (6) 

(C11 - -  C 12)C44 - -  2c 24 > 0 (7) 

for the crystal to be mechanically stable. The first 
criterion (5) insures that the squared velocity of a 
transverse elastic wave in the plane perpendicular to 
the c-axis is positive. The second criterion (6) corre- 
sponds to positive bulk modulus. The third criterion 
(7) corresponds to shear-waves in planes including the 
c-axis. We have evaluated [34] the elastic constants as 
a function of pressure and find that the first two criteria 
are met at ambient conditions and for pressures well 
above the amorphization transformation. However, the 
third criterion is violated at a pressure of around 30 
GPa which is consistent with the collapse of the crys- 
talline phase observed experimentally at that pressure. 

The microscopic nature of this instability appears to 
be associated with the formation of the b.c.c, anion 
packing at high pressure. Our analysis suggests that 
the instability is intimately related to the coordination 
change of the silicon cation from a four-fold to a six- 
fold site. In the picture suggested by first principles 
calculations, as pressure is applied to the a-quartz 
structure a mechanical strain builds up. This strain is 
confirmed by the small Si-O-Si bond angle and the 
interpolyhedral O-O distances. The non-linearity of 
the angle and distance changes with pressure above 
about 15 GPa reinforce this picture of large mechanical 
strains near the amorphization transformation. We con- 
firm that near this transformation the a-quartz structure 
assumes a b.c.c, packing of the anions. Moreover, this 
b.c.c, packing is accompanied by a mechanical instability 
in which one of the Born criteria is violated. In this 
unstable arrangement, we envision silicon cations dif- 
fusing from tetrahedral to octahedral sites. At high 
pressures, the silicon cations occupy primarily octahedral 
sites, and a ruffle-like i.e. stishovite, structure occurs. 

5. Conclusions 

We have illustrated in this paper how first principles 
total energy calculations can be used to examine struc- 
tural trends for crystalline silica. These approaches are 
particularly powerful as they require no experimental 
input, yet they yield accurate structural information. 
For example, in the case of a-quartz the only input 
into the calculations are the atomic numbers of silicon 
and oxygen, and the crystal symmetry. With this input 
one is able to compute accurately the ambient structural 
parameters, the cohesive energy, compressibility, etc., 
and the behavior of quartz under pressure. 

We focused on the behavior of crystalline silica under 
pressure in terms of phase stability, and on the stability 
of a given phase, a-quartz, with respect to amorphization 
under pressure. We found that our pseudopotential 
calculations reproduce accurately the known phases of 
crystalline silica. In particular, we find that a-quartz 
is the most stable form of silica at ambient pressure. 
At elevated pressure, we find that the stishovite structure 
is more stable. In this structure, the silicon cations 
change from being a four-fold coordinated species to 
a six-fold coordinated species. This increased coordi- 
nation is accompanied by a large change in the density, 
although the total electronic energy remains nearly 
equal to that of a-quartz. If the pressure is further 
increased, we find that the stishovite structure becomes 
unstable when compared with the Pa3 structure. The 
Pa3 structure is a distortion of the fluorite structure; 
the silicon cation becomes eight-fold coordinated. We 
find that silica will never be stable within the ideal 
fluorite structure. 

We also examined the behavior of a-quartz as a 
function of pressure. This crystal is known to amorphize 
near 30 GPa. At even higher pressures (near 60 GPa), 
this material appears to recrystallize in the ruffle struc- 
ture. Unphysically small bond angles and O-O inter- 
polyhedral distances in a-quartz indicate the material 
may become mechanically unstable above about 15 
GPa. We confirmed this by computing the elastic con- 
stants of a-quartz. We find that above about 30 GPa, 
one of the Born criteria for mechanical stability is 
violated by the quartz elastic constants. We also find 
that if the a-quartz structure were subjected to higher 
pressures, the oxygen anions would form a b.c.c, array. 
This arrangement would promote diffusion of the silicon 
cations from four-fold to six-fold sites, and could account 
for the ease of ruffle formation at high pressures. 

As this work illustrates, first principles calculations 
can be valuable tools for exploring the structure of 
solids. Although it is not generally possible to examine 
an entire family of structures with varying stoichiometry, 
it is possible to examine the details of a given structure 
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and obtain a detailed picture of the chemical bonding 
force within that structure. 
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